Robust Likelihood-Based Survival Modeling with Microarray Data
نویسندگان
چکیده
منابع مشابه
Robust Likelihood-based Analysis of Multivariate Data with Missing Values
The model-based approach to inference from multivariate data with missing values is reviewed. Regression prediction is most useful when the covariates are predictive of the missing values and the probability of being missing, and in these circumstances predictions are particularly sensitive to model misspecification. The use of penalized splines of the propensity score is proposed to yield robu...
متن کاملMaximum Likelihood with Coarse Data based on Robust Optimisation
This paper deals with the problem of probability estimation in the context of coarse data. Probabilities are estimated using the maximum likelihood principle. Our approach presupposes that each imprecise observation underlies a precise one, and that the uncertainty that pervades its observation is epistemic, rather than representing noise. As a consequence, the likelihood function of the illobs...
متن کاملSpatial Modeling of Censored Survival Data
An important issue in survival data analysis is the identification of risk factors. Some of these factors are identifiable and explainable by presence of some covariates in the Cox proportional hazard model, while the others are unidentifiable or even immeasurable. Spatial correlation of censored survival data is one of these sources that are rarely considered in the literatures. In this paper,...
متن کاملRobust classification modeling on microarray data using misclassification penalized posterior
MOTIVATION Genome-wide microarray data are often used in challenging classification problems of clinically relevant subtypes of human diseases. However, the identification of a parsimonious robust prediction model that performs consistently well on future independent data has not been successful due to the biased model selection from an extremely large number of candidate models during the clas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2009
ISSN: 1548-7660
DOI: 10.18637/jss.v029.i01